12.4: Inverse Z-Transform (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    22917
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Introduction

    When using the z-transform

    \[X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \nonumber \]

    it is often useful to be able to find \(x[n]\) given \(X(z)\). There are at least 4 different methods to do this:

    1. Inspection
    2. Partial-Fraction Expansion
    3. Power Series Expansion
    4. Contour Integration

    Inspection Method

    This "method" is to basically become familiar with the z-transform pair tables and then "reverse engineer".

    Example \(\PageIndex{1}\)

    When given

    \[X(z)=\frac{z}{z-\alpha} \nonumber \]

    with an ROC (Section 12.6) of

    \[|z|>\alpha \nonumber \]

    we could determine "by inspection" that

    \[x[n]=\alpha^{n} u[n] \nonumber \]

    Partial-Fraction Expansion Method

    When dealing with linear time-invariant systems the z-transform is often of the form

    \[\begin{align}
    X(z) &=\frac{B(z)}{A(z)} \nonumber \\
    &=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
    \end{align} \nonumber \]

    This can also expressed as

    \[X(z)=\frac{a_{0}}{b_{0}} \frac{\prod_{k=1}^{M} 1-c_{k} z^{-1}}{\prod_{k=1}^{N} 1-d_{k} z^{-1}} \nonumber \]

    where \(c_k\) represents the nonzero zeros of \(X(z)\) and \(d_k\) represents the nonzero poles.

    If \(M<N\) then \(X(z)\) can be represented as

    \[X(z)=\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}} \nonumber \]

    This form allows for easy inversions of each term of the sum using the inspection method and the transform table. If the numerator is a polynomial, however, then it becomes necessary to use partial-fraction expansion to put \(X(z)\) in the above form. If \(M≥N\) then \(X(z)\) can be expressed as

    \[X(z)=\sum_{r=0}^{M-N} B_{r} z^{-r}+\frac{\sum_{k=0}^{N-1} b_{k}^{\prime} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} \nonumber \]

    Example \(\PageIndex{2}\)

    Find the inverse z-transform of

    \[X(z)=\frac{1+2 z^{-1}+z^{-2}}{1-3 z^{-1}+2 z^{-2}} \nonumber \]

    where the ROC is \(|z|>2\). In this case \(M=N=2\), so we have to use long division to get

    \[X(z)=\frac{1}{2}+\frac{\frac{1}{2}+\frac{7}{2} z^{-1}}{1-3 z^{-1}+2 z^{-2}} \nonumber \]

    Next factor the denominator.

    \[X(z)=2+\frac{-1+5 z^{-1}}{\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)} \nonumber \]

    Now do partial-fraction expansion.

    \[X(z)=\frac{1}{2}+\frac{A_{1}}{1-2 z^{-1}}+\frac{A_{2}}{1-z^{-1}}=\frac{1}{2}+\frac{\frac{9}{2}}{1-2 z^{-1}}+\frac{-4}{1-z^{-1}} \nonumber \]

    Now each term can be inverted using the inspection method and the z-transform table. Thus, since the ROC is \(|z|>2\),

    \[x[n]=\frac{1}{2} \delta[n]+\frac{9}{2} 2^{n} u[n]-4 u[n] \nonumber \]

    Demonstration of Partial Fraction Expansion

    12.4: Inverse Z-Transform (2)
    Khan Lecture on Partial Fraction Expansion

    Power Series Expansion Method

    When the z-transform is defined as a power series in the form

    \[X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \nonumber \]

    then each term of the sequence \(x[n]\) can be determined by looking at the coefficients of the respective power of \(z^{−n}\).

    Example \(\PageIndex{3}\)

    Now look at the z-transform of a finite-length sequence.

    \[\begin{aligned}
    X(z) &=z^{2}\left(1+2 z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)\left(1+z^{-1}\right) \\
    &=z^{2}+\frac{5}{2} z+\frac{1}{2}+-z^{-1}
    \end{aligned} \nonumber \]

    In this case, since there were no poles, we multiplied the factors of \(X(z)\). Now, by inspection, it is clear that

    \[x[n]=\delta[n+2]+\frac{5}{2} \delta[n+1]+\frac{1}{2} \delta[n]+-\delta[n-1] \nonumber \]

    One of the advantages of the power series expansion method is that many functions encountered in engineering problems have their power series' tabulated. Thus functions such as log, sin, exponent, sinh, etc, can be easily inverted.

    Example \(\PageIndex{4}\)

    Suppose

    \[X(z)=\log _{n}\left(1+\alpha z^{-1}\right) \nonumber \]

    Noting that

    \[\log _{n}(1+x)=\sum_{n=1}^{\infty} \frac{-1^{n+1} x^{n}}{n} \nonumber \]

    Then

    \[X(z)=\sum_{n=1}^{\infty} \frac{-1^{n+1} \alpha^{n} z^{-n}}{n} \nonumber \]

    Therefore

    \[X(z)=\left\{\begin{array}{l}
    \frac{-1^{n+1} \alpha^{n}}{n} \text { if } n \geq 1 \\
    0 \text { if } n \leq 0
    \end{array}\right. \nonumber \]

    Contour Integration Method

    Without going in to much detail

    \[x[n]=\frac{1}{2 \pi j} \oint_{r} X(z) z^{n-1} \mathrm{d} z \nonumber \]

    where \(r\) is a counter-clockwise contour in the ROC of \(X(z)\) encircling the origin of the z-plane. To further expand on this method of finding the inverse requires the knowledge of complex variable theory and thus will not be addressed in this module.

    Demonstration of Contour Integration

    12.4: Inverse Z-Transform (3)

    Conclusion

    The Inverse Z-transform is very useful to know for the purposes of designing a filter, and there are many ways in which to calculate it, drawing from many disparate areas of mathematics. All nevertheless assist the user in reaching the desired time-domain signal that can then be synthesized in hardware(or software) for implementation in a real-world filter.

    12.4: Inverse Z-Transform (2024)
    Top Articles
    Helios Blue City - Warszawa - Repertuar kin - Filmweb
    Minute Clinic Mooresville Nc
    Will Byers X Male Reader
    CLI Book 3: Cisco Secure Firewall ASA VPN CLI Configuration Guide, 9.22 - General VPN Parameters [Cisco Secure Firewall ASA]
    Myexperience Login Northwell
    Obor Guide Osrs
    Valley Fair Tickets Costco
    Hk Jockey Club Result
    Santa Clara College Confidential
    Skip The Games Norfolk Virginia
    True Statement About A Crown Dependency Crossword
    Max 80 Orl
    Daniela Antury Telegram
    Missing 2023 Showtimes Near Landmark Cinemas Peoria
    Lqse-2Hdc-D
    Guardians Of The Galaxy Vol 3 Full Movie 123Movies
    OSRS Dryness Calculator - GEGCalculators
    Housework 2 Jab
    Think Up Elar Level 5 Answer Key Pdf
    Painting Jobs Craigslist
    Busted Barren County Ky
    Craigslist Missoula Atv
    Craigslist Prescott Az Free Stuff
    Forest Biome
    LCS Saturday: Both Phillies and Astros one game from World Series
    Galaxy Fold 4 im Test: Kauftipp trotz Nachfolger?
    Teekay Vop
    Beaufort 72 Hour
    Craigslist List Albuquerque: Your Ultimate Guide to Buying, Selling, and Finding Everything - First Republic Craigslist
    Robotization Deviantart
    12657 Uline Way Kenosha Wi
    lol Did he score on me ?
    Page 2383 – Christianity Today
    Bursar.okstate.edu
    Redding Activity Partners
    Aladtec Login Denver Health
    Jambus - Definition, Beispiele, Merkmale, Wirkung
    MethStreams Live | BoxingStreams
    Audi Q3 | 2023 - 2024 | De Waal Autogroep
    Consume Oakbrook Terrace Menu
    Pp503063
    Craigslist Lakeside Az
    968 woorden beginnen met kruis
    Wasmo Link Telegram
    Luciane Buchanan Bio, Wiki, Age, Husband, Net Worth, Actress
    Tfn Powerschool
    Santa Ana Immigration Court Webex
    Twizzlers Strawberry - 6 x 70 gram | bol
    Sj Craigs
    Besoldungstabellen | Niedersächsisches Landesamt für Bezüge und Versorgung (NLBV)
    Marion City Wide Garage Sale 2023
    Haunted Mansion Showtimes Near The Grand 14 - Ambassador
    Latest Posts
    Article information

    Author: Manual Maggio

    Last Updated:

    Views: 5483

    Rating: 4.9 / 5 (49 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Manual Maggio

    Birthday: 1998-01-20

    Address: 359 Kelvin Stream, Lake Eldonview, MT 33517-1242

    Phone: +577037762465

    Job: Product Hospitality Supervisor

    Hobby: Gardening, Web surfing, Video gaming, Amateur radio, Flag Football, Reading, Table tennis

    Introduction: My name is Manual Maggio, I am a thankful, tender, adventurous, delightful, fantastic, proud, graceful person who loves writing and wants to share my knowledge and understanding with you.